DEVELOPMENT OF A MULTIPLEXED QUANTITATIVE PCR ASSAY FOR CD19-DIRECTED **CAR-T CELL PERSISTENCE MONITORING**

James Grantham, Clayton Thomas, Jerod Davidson, Jamie Nutt and Jun Huang Eurofins Viracor, Lenexa, Kansas, United States

INTRODUCTION

Chimeric antigen receptor (CAR) T cell therapy has transformed hematological cancer treatment with six therapies now approved by the FDA. Four of these therapies (tisa-cel, axi-cel, brexu-cel, and liso-cel) target CD19 using single chain variable fragments (scFvs) derived from the heavy and light chain variable (V_{H} and V_{I}) regions of the monoclonal antibody FMC63.

The primary objective of this study was to evaluate the ability of FMC63 scFv-specific real-time PCR (qPCR) to detect and quantify FMC63 DNA in whole blood specimens. This assay is intended for the quantitative detection of FMC63 DNA from CAR-T cells in whole blood specimens for the purpose of monitoring CAR-T cell engraftment, expansion, and persistence in individuals receiving CD19-directed CAR-T cell therapy.

Here we describe the development, validation and performance characteristics of a multiplexed, quantitative qPCR assay targeting FMC63 for the monitoring of CD19-directed CAR-T cell therapy.

MATERIALS AND METHODS

Multiple qPCR primers and probes were designed to target the V_{H} and V_{I} regions of FMC63 and screened to identify those with the highest amplification efficiency and sensitivity. The most promising candidates were multiplexed with an RNase P single-copy human reference gene assay, optimized, and further characterized using whole blood spiked with linearized plasmid containing the FMC63 target sequence.

The assay demonstrating the best preliminary efficiency, precision, and sensitivity was then validated in accordance with guidelines recommended by the New York State Department of Health, College of American Pathologists (CAP), and Clinical and Laboratory Standards Institute (CLSI) to establish the analytical specificity, linearity and dynamic range, analytical sensitivity (limit of detection and lower limit of quantification), intra- and inter-assay precision (reproducibility), and analytical accuracy of the test method¹⁻⁷.

DNA was extracted from EDTA whole blood using the MagMAX[™] DNA Multi-Sample Ultra 2.0 Kit and KingFisher[™] Flex system (Thermo Fisher). Amplification and detection were performed using TaqMan[™] Fast Advanced Master Mix (Thermo Fisher) and the Applied Biosystems[™] 7500 Fast instrument. Quantification was performed using FMC63 and RNase P linearized plasmid standards containing scFv FMC63 and RNase P qPCR target sequences, and quantitative results were evaluated in copies/mL and copies/µg of genomic DNA assuming one copy of RNase P per haploid cell.

RESULTS

Table 1. Analytical specificity against human genomic DNA was demonstrated by testing DNA isolated from EDTA whole blood collected from 20 individuals. FMC63 signal was undetected in all specimens tested, with all samples positive for RNase P, demonstrating successful extraction and amplification.

References

RESULTS

- Figure 1. Linear regression of plasmid standard dilutions resulted in an R² value of 0.9998 and a slope of -3.3235 (99.93% efficiency) over seven orders of magnitude (5 x 10^o to 5.000 x 10⁷ copies per reaction or the preextraction equivalent of 6.250 x 10¹ to 6.250 x 10⁸ copies per mL). Full-process sample dilutions produced an R² of 0.9982, a slope of 1.0041, and a y-intercept of -0.0474 when analyzed in log_{10} copies/mL and an R² of 0.9984, a slope of 0.9867, and a y-intercept of 0.0507 when analyzed in \log_{10} copies/µg DNA.
- **Table 2.** Excellent precision was observed, with intra-assay copies/mL %CVs results ranging from 1.51 to 20.68% across all concentrations tested and inter-assay %CVs of 5.53%, 8.45%, and 20.97% observed for high, medium, and low analyte concentrations, respectively. When analyzing copies/µg DNA results, intra-assay %CVs ranged from 2.32 to 16.44% across all concentrations and inter-assay %CVs were 7.58%, 6.86%, and 15.80% for high, medium, and low concentrations, respectively.
- **Table 3.** The limit of detection (LOD₉₅) predicted by Probit analysis was 87.61 copies/mL (95% confidence interval of 51.99 to 197.8 copies/mL) and 1.816 copies/µg (95% confidence interval of 1.077 to 4.099 copies/µg). The lower limit of quantification (LLoQ) was determined to be 100.0 copies/mL and 2.072 copies/µg of DNA.
- Table 4. Analytical accuracy was demonstrated with FMC63 target detected in 100% (60/60) of blinded and randomized positive samples with all observed log_{10} copies/mL and log_{10} copies/µg results within ±0.5 log_{10} copies of expected values. 100% (20/20) of blinded negative samples were negative for the FMC63 target and positive for RNase P. as shown in **Table 1**.

Table 1. Analytical specificity and negative analytical accuracy sample data

		•	5	0		y	•				
Sample ID	FMC63 CAR Copies/mL	RNase P Copies/mL	Sample ID	FMC63 CAR Copies/mL	RNase P Copies/mL	Sample ID	FMC63 CAR Copies/mL	RNase P Copies/mL	Sample ID	FMC63 CAR Copies/mL	RNase P Copies/mL
Negative Donor 1	Not Detected	14,166,792	Negative Donor 6	Not Detected	8,144,858	Negative Donor 11	ND	9,936,369	Negative Donor 16	Not Detected	10,572,669
Negative Donor 2	Not Detected	9,849,029	Negative Donor 7	Not Detected	12,436,385	Negative Donor 12	ND	10,793,698	Negative Donor 17	Not Detected	23,401,263
Negative Donor 3	Not Detected	9,290,654	Negative Donor 8	Not Detected	7,743,921	Negative Donor 13	ND	9,226,385	Negative Donor 18	Not Detected	14,941,500
Negative Donor 4	Not Detected	14,334,866	Negative Donor 9	Not Detected	16,994,108	Negative Donor 14	ND	10,786,426	Negative Donor 19	Not Detected	19,012,166
Negative Donor 5	Not Detected	17,739,561	Negative Donor 10	Not Detected	18,815,863	Negative Donor 15	ND	18,806,989	Negative Donor 20	Not Detected	15,103,488

Figure 1. Linearity and dynamic range

Table 2. Intra- and inter-assay precision

	High Samples				Medium Samples				Low Samples			
Data Set		FMC63 CAR copies/mL	FMC63 CAR copies/µg DNA	Data Set		FMC63 CAR copies/mL	FMC63 CAR copies/µg DNA	Data Set		FMC63 CAR copies/mL	FMC63 CAR copies/µg DNA	
Intro accov	Mean	9,124,534	228,215	Intra accav	Mean	100,999	2,727	Intra accav	Mean	10888	44.36	
nnid-assay	SD	621,309	12,583	nnua-assay	SD	3,232	150.2	nnia-assay	SD	224.9	7.294	
precision day 1	%CV	6.81%	5.51%	precision day 1	%CV	3.20%	5.51%	precision day 1	%CV	11.92%	16.44%	
Intro occov	Mean	8,810,215	240,034	Intro occov	Mean	118,127	2,973	Intro occov	Mean	1,734	46.63	
mua-assay	SD	132,788	18,718	nnia-assay	SD	6,572	68.94	nna-assay	SD	124.2	4.375	
precision day 2	%CV	1.51%	7.80%	precision day 2	%CV	5.56%	2.32%	precision day z	%CV	7.16%	9.38%	
Intro accov	Mean	9,315,644	211,940	Intra accav	Mean	103,907	2,627	Intra accav	Mean	2,404	55.19	
initia-assay	SD	563,169	5,236	nna-assay	SD	5,088	142.2	nna-assay	SD	497.1	7.324	
precision day 5	%CV	6.05%	2.47%	precision day 5	%CV	4.90%	5.41%	precision day 5	%CV	20.68%	13.27%	
INITED ACCAV	Mean	9,083,464	226,730	INITED ACCAV	Mean	107,678	2,776		Mean	2,009	48.73	
DDECISION	SD	502,463	17,185	DDECISION	SD	9,096	190.5	DDECISION	SD	421.1	7.700	
PRECISION	%CV	5.53%	7.58%	FILECISION	%CV	8.45%	6.86%	FRECISION	%CV	20.97%	15.80%	

RESULTS

CAR-T FMC63 Plasmid Spiked Whole Blood

Table 3. Analytical sensitivity (LOD and LLoQ)

Probit L	OD Prediction:	87.61	copies/mL		LLoQ:	100.0	copies/mL
Expected copies/mL	Observed Copies/mL	Expected log ₁₀ Copies/mL	Observed log ₁₀ Copies/mL	Standard deviation	Bias	% Detection	Total analytical error
800.0	660.5	2.9031	2.8114	0.0883	0.0916	100%	0.3
400.0	269.1	2.6021	2.4106	0.1323	0.1915	100%	0.5
200.0	145.6	2.3010	2.1434	0.1398	0.1576	100%	0.4
100.0	67.11	2.0000	1.7937	0.1808	0.2063	100%	0.6
50.00	26.32	1.6990	1.3104	0.3444	0.3885	80%	1.1
12.50	10.14	1.0969	0.9180	0.2539	0.1789	65%	0.7
6.250	6.706	0.7959	0.7918	0.1835	0.0041	40%	0.4
3.125	4.623	0.4949	0.6395	0.1660	0.1447	32%	0.5
1.563	4.430	0.1938	0.6460	0.0260	0.4522	10%	0.5
Probit L	OD Prediction:	1.816	copies/ua		LLoQ:	2.072	copies/µa
Probit L Expected copies/µg	OD Prediction: Observed Copies/µg	1.816 Expected log ₁₀ Copies/μg	copies/µg Observed log ₁₀ Copies/µg	Standard deviation	LLoQ: Bias	2.072 % Detection	<mark>copies/µg</mark> Total analytical error
Probit L Expected copies/µg 16.58	OD Prediction: Observed Copies/µg 13.52	1.816 Expected log ₁₀ Copies/μg	copies/μg Observed log ₁₀ Copies/μg 1.1226	Standard deviation 0.0887	LLoQ: Bias 0.0970	2.072 % Detection 100%	copies/μg Total analytical error 0.3
Probit L Expected copies/µg 16.58 8.289	OD Prediction: Observed Copies/µg 13.52 5.287	1.816 Expected log ₁₀ Copies/μg 1.2196 0.9185	copies/µg Observed log ₁₀ Copies/µg 1.1226 0.7059	Standard deviation 0.0887 0.1233	LLoQ: <i>Bias</i> 0.0970 0.2126	2.072 % Detection 100% 100%	copies/μg Total analytical error 0.3 0.5
Probit L Expected copies/µg 16.58 8.289 4.145	OD Prediction: Observed Copies/µg 13.52 5.287 3.061	1.816 Expected log ₁₀ Copies/µg 1.2196 0.9185 0.6175	соріеs/µg Оbserved log ₁₀ Соріеs/µg 1.1226 0.7059 0.4639	<i>Standard deviation</i> 0.0887 0.1233 0.1490	LLoQ: <i>Bias</i> 0.0970 0.2126 0.1536	2.072 % Detection 100% 100%	copies/µg Total analytical error 0.3 0.5 0.5
Probit L Expected copies/µg 16.58 8.289 4.145 2.072	OD Prediction: Observed Copies/µg 13.52 5.287 3.061 1.659	1.816 Expected log ₁₀ Copies/µg 1.2196 0.9185 0.6175 0.3165	соріеs/µg Оbserved log ₁₀ Соріеs/µg 1.1226 0.7059 0.4639 0.1670	<i>Standard deviation</i> 0.0887 0.1233 0.1490 0.2269	LLoQ: <i>Bias</i> 0.0970 0.2126 0.1536 0.1495	2.072 % Detection 100% 100% 100%	copies/µg Total analytical error 0.3 0.5 0.5 0.6
Probit L Expected copies/µg 16.58 8.289 4.145 2.072 1.036	OD Prediction: Observed Copies/µg 13.52 5.287 3.061 1.659 0.5762	1.816 <i>Expected log</i> ₁₀ <i>Copies/µg</i> 1.2196 0.9185 0.6175 0.3165 0.0154	copies/µg Observed log₁₀ Copies/µg 1.1226 0.7059 0.4639 0.1670 -0.3429	Standard deviation 0.0887 0.1233 0.1490 0.2269 0.3409	LLoQ: <i>Bias</i> 0.0970 0.2126 0.1536 0.1495 0.3584	2.072 % Detection 100% 100% 100% 80%	copies/µg Total analytical error 0.3 0.5 0.5 0.6 1.0
Probit L Expected copies/µg 16.58 8.289 4.145 2.072 1.036 0.5181	OD Prediction: Observed Copies/µg 13.52 5.287 3.061 1.659 0.5762 0.3079	1.816 Expected log ₁₀ Copies/µg 1.2196 0.9185 0.6175 0.3165 0.0154 -0.2856	соріеs/µg Оbserved log ₁₀ Соріеs/µg 1.1226 0.7059 0.4639 0.1670 -0.3429 -0.5856	Standard deviation 0.0887 0.1233 0.1490 0.2269 0.3409 0.2654	LLoQ: <i>Bias</i> 0.0970 0.2126 0.1536 0.1495 0.3584 0.3000	2.072 % Detection 100% 100% 100% 80% 75%	copies/μg <i>Total analytical error</i> 0.3 0.5 0.5 0.6 1.0 0.8
Probit L Expected copies/µg 16.58 8.289 4.145 2.072 1.036 0.5181 0.2590	OD Prediction: Observed Copies/µg 13.52 5.287 3.061 1.659 0.5762 0.3079 0.2343	1.816Expected log10 Copies/µg1.21960.91850.61750.31650.0154-0.2856-0.5866	copies/µg Observed log₁₀ Copies/µg 1.1226 0.7059 0.4639 0.1670 -0.3429 -0.5856 -0.7505	Standard deviation 0.0887 0.1233 0.1490 0.2269 0.3409 0.2654 0.2907	LLoQ: <i>Bias</i> 0.0970 0.2126 0.1536 0.1495 0.3584 0.3000 0.1638	2.072 % Detection 100% 100% 100% 80% 75% 65%	copies/μg <i>Total analytical error</i> 0.3 0.5 0.5 0.6 1.0 0.8 0.7
Probit L Expected copies/µg 16.58 8.289 4.145 2.072 1.036 0.5181 0.2590 0.1295	OD Prediction: Observed Copies/µg 13.52 5.287 3.061 1.659 0.5762 0.3079 0.2343 0.1344	1.816Expected log10 Copies/µg1.21960.91850.61750.31650.0154-0.2856-0.5866-0.8877	copies/µg Observed log₁₀ Copies/µg 1.1226 0.7059 0.4639 0.1670 -0.3429 -0.5856 -0.7505 -0.9103	Standard deviation0.08870.12330.14900.22690.34090.26540.29070.1848	LLoQ: <i>Bias</i> 0.0970 0.2126 0.1536 0.1495 0.3584 0.3000 0.1638 0.0226	2.072 % Detection 100% 100% 100% 80% 75% 65% 40%	copies/μg <i>Total analytical error</i> 0.3 0.5 0.5 0.6 1.0 0.8 0.7 0.4
Probit L <i>Expected</i> <i>copies/µg</i> 16.58 8.289 4.145 2.072 1.036 0.5181 0.2590 0.1295 0.06476	OD Prediction: Observed Copies/µg 13.52 5.287 3.061 1.659 0.5762 0.3079 0.2343 0.1344 0.08893	1.816 Expected log ₁₀ Copies/µg 1.2196 0.9185 0.6175 0.3165 0.0154 -0.2856 -0.5866 -0.5866 -0.8877 -1.1887	copies/µg Observed log₁₀ Copies/µg 1.1226 0.7059 0.7059 0.4639 0.1670 -0.3429 -0.5856 -0.7505 -0.9103 -1.0691	Standard deviation 0.0887 0.1233 0.1490 0.2269 0.3409 0.2654 0.2907 0.1848 0.1429	LLoQ: <i>Bias</i> 0.0970 0.2126 0.1536 0.1495 0.3584 0.3000 0.1638 0.0226 0.1196	2.072 % Detection 100% 100% 100% 80% 75% 65% 40% 32%	copies/μg <i>Total analytical error</i> 0.3 0.5 0.5 0.6 1.0 0.8 0.7 0.4 0.4

Table 4. Analytical accuracy positive sample data

Expected copies/mL	Expected log ₁₀ copies/mL	Minimum observed log ₁₀ copies/mL	Minimum observed vs. expected ∆log ₁₀ copies/mL	Maximum observed log ₁₀ copies/mL	Maximum observed vs. expected ∆log ₁₀ copies/mL
100,000,000	8.0000	7.8663	-0.1337	7.9528	-0.0472
10,000,000	7.0000	6.9245	-0.0755	7.0050	0.0050
1,000,000	6.0000	5.8460	-0.1540	6.1331	0.1331
100,000	5.0000	4.9882	-0.0118	5.1051	0.1051
10,000	4.0000	4.0447	0.0447	4.1172	0.1172
2,000	3.3010	3.2071	-0.0939	3.4796	0.1785
Expected copies/µg	Expected log ₁₀ copies/µg	Minimum observed log ₁₀ copies/µg	Minimum observed vs. expected ∆log ₁₀ copies/µg	Maximum observed log ₁₀ copies/µg	Maximum observed vs. expected ∆log ₁₀ copies/µg
Expected copies/µg 2,469,131	Expected log ₁₀ copies/µg 6.3925	Minimum observed log ₁₀ copies/µg 6.2698	Minimum observed vs. expected ∆log ₁₀ copies/µg -0.1228	Maximum observed log ₁₀ copies/μg 6.4234	Maximum observed vs. expected ∆log ₁₀ copies/µg 0.0308
<i>Expected</i> <i>copies/µg</i> 2,469,131 246,913	Expected log ₁₀ copies/μg 6.3925 5.3925	Minimum observed log ₁₀ copies/µg 6.2698 5.3159	Minimum observed vs. expected ∆log ₁₀ copies/µg -0.1228 -0.0767	Maximum observed log ₁₀ copies/μg 6.4234 5.4302	Maximum observed vs. expected ∆log ₁₀ copies/μg 0.0308 0.0376
<i>Expected</i> <i>copies/µg</i> 2,469,131 246,913 24,691	Expected log ₁₀ copies/µg 6.3925 5.3925 4.3925	<i>Minimum</i> observed log ₁₀ copies/µg 6.2698 5.3159 4.2172	Minimum observed vs. expected ∆log ₁₀ copies/µg -0.1228 -0.0767 -0.1754	<i>Maximum</i> observed log ₁₀ copies/µg 6.4234 5.4302 4.4659	Maximum observed vs. expected ∆log ₁₀ copies/µg 0.0308 0.0376 0.0734
<i>Expected</i> <i>copies/µg</i> 2,469,131 246,913 24,691 2,469	Expected log ₁₀ copies/µg 6.3925 5.3925 4.3925 3.3925	Minimum observed log10 copies/µg 6.2698 5.3159 4.2172 3.3815	Minimum observed vs. expected △log ₁₀ copies/µg -0.1228 -0.0767 -0.1754 -0.0110	<i>Maximum</i> observed log ₁₀ copies/µg 6.4234 5.4302 4.4659 3.4881	Maximum observed vs. expected ∆log ₁₀ copies/µg 0.0308 0.0376 0.0734 0.0956
Expected copies/µg 2,469,131 246,913 24,691 2,469 246.9	Expected log ₁₀ copies/µg 6.3925 5.3925 4.3925 3.3925 2.3925	Minimum observed log10 copies/µg6.26985.31594.21723.38152.4551	Minimum observed vs. expected ∆log 10 copies/µg -0.1228 -0.0767 -0.1754 -0.0110 0.0626	<i>Maximum</i> observed log ₁₀ copies/µg 6.4234 5.4302 4.4659 3.4881 2.4906	Maximum observed vs. expected ∆log ₁₀ copies/µg 0.0308 0.0376 0.0734 0.0956 0.0980

CONCLUSIONS

Monitoring of CAR-T cell expansion and persistence can provide important insight into therapeutic efficacy, durability of response, potential for relapse, and uncontrolled proliferation. Currently, there are no direct CAR-T cell monitoring options commercially available, with B cell aplasia typically used as a surrogate marker for CD19-directed CAR-T cell efficacy. The validated test method described here demonstrates excellent specificity, sensitivity, linearity, precision, and accuracy, providing a reliable means of monitoring anti-CD19 CAR-T cell persistence in patients receiving any of the currently approved therapies, as well as others under investigation using the FMC63 scFv.

^{1.} Approval of Microbiology Nucleic Acid Amplification Assays. New York State Department of Health. 2011.

^{2.} Basic Method Validation, 4th Edition. JO. Westgard, Ph.D. Westgard QC, Inc. Madison, WI. 2020.

^{3.} Burd EM. Validation of laboratory-developed molecular assays for infectious diseases. Clin Microbiol. Rev. 2010; 23(3):550-76. 4. EP17-A2. Vol 32 No. 8. Evaluation of Detection Capability for Clinical Laboratory Measurement Procedures; Approved Guideline, Second Edition. Clinical and Laboratory Standards Institute. Wayne, PA. 2012.

^{5.} EP21. Estimation of Total Analytical Error for Quantitative Medical Laboratory Measurement Procedures; Approved Guideline Clinical and Laboratory Standards Institute. Wayne, PA. 2016.

^{6.} MM03. Molecular Diagnostics Methods for Infectious Diseases; Approved Guideline, Third Edition. Clinical and Laboratory Standards Institute. Wayne, PA. 2015.

^{7.} MM06-A2, Vol. 30 No.22. Quantitative Molecular Methods for Infectious Diseases; Approved Guideline, Second Edition. Clinical and Laboratory Standards Institute. Wayne, PA. 2010.

^{8.} Davis L, Riccitelli N, Valencia N, et al. Monitoring of tisagenlecleucel transgene DNA using a quantitative polymerase chain reaction assay. Mol. Ther. Methods Clin. Dev. 2020; 20:535-541.

^{9.} Kunz A, Gern U, Schmitt A, et al. Optimized assessment of qPCR-based vector copy numbers as a safety parameter for GMPgrade CAR T cells and monitoring of frequency in patients. Mol. Ther. Methods Clin. Dev. 2020; 17:448-45411.

^{10.} Schubert ML, Kunz A, Schmitt A, et al. Assessment of CAR T Cell Frequencies in Axicabtagene Ciloleucel and Tisagenlecleucel Patients Using Duplex Quantitative PCR. Cancers. 2020; 12(10):2820.