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Eurofins Scientific BioPharma Services

FOOD BIOPHARMACEUTICAL f/i ENVIRONMENTAL

/

* FOUNDED IN 1987 WITH 4 EMPLOYEES

* 61,000 STAFF IN 940 LABORATORIES ACROSS 59 COUNTRIES

* EURO 6.7 BILLION IN ANNUAL REVENUE IN 2021

* OVER 200,000 VALIDATED ANALYTICAL METHODS

* 450,000,000 ASSAYS PERFORMED ANNUALLY

* OVER 40 MILLION COVID-19 PCR TESTS CARRIED OUT SINCE START OF THE PANDEMIC
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End-to-End Testing Solution
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DISCOVERY: Small Molecule and Biologic Screening and Characterization, Integrated Drug Discovery, Chemistry,
in vitro Safety Pharmacology, Phenotypic Analysis, ADME-Tox, in vivo Models, Custom Assays and Product
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Toxicology, Safety Pharmacology, Analytical Services

CDMO: Drug Substance/API & Drug Product Development & Manufacturing for Biologics and Small Molecules

CLINICAL TRIALS SUPPLY: Primary & Secondary Packaging and Distribution

BIOPHARMA PRODUCT TESTING: GLP, GMP, Stability, Quality Control, Microbiological Testing, Process Development

PSS: Hiring, training and managing insourced scientists and related support staff at Client facilities.
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Bioinformatics/Al to mine the public-data & boost
the Lab of the Future

Rohita Sinha, PhD
Director, CoE for Bl & Al, Eurofins, US
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Why do we need so many data points?

Deep Learning

A Pertormance

Deep Learning

Classical Learning

-
J
Amount of Training Data

Ferformanca
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Cloud computing

eep learning

ulti-laver mewral nebwork

© Twa-layer neural netwark

—
Classical artificial intelligence

The size of data
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We (healthcare industry) need to either generate or collaborate with hospitals/other-

centers to get enough data to validate our products.

size in TE

TCGA

For model-development: we can certainly source the data
from the public-databases

e

§ v @l » w ® » &

Public databases offered by NIH (NCBI, GEO, PDB, TCGA,
PubChem) and other groups such as GISAID (a global repository
of Covid-2 genome sequences)

[N X NN ]

G0 @IGTEXPortal

# i

V8 Release Tissues Donors Samples

Y XTI KX

Keyword or GEO Accession Search
Total 54 948 17382
Browse Content With 54 838 15253
Repository Browser Genotype
DataSets: 4348
5 03545 Has eQTL 49 838 15201
Series! AN Analysis*

number of unigue patient ids
Platforms: 25153

Samples: 6476128 * Number of samples with genotype >= 70



Challenges with the public data 3% eurofins
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DELE Data

Normalization

Harmonization

Platform
effect
Data
curation Data
Annotation

It’s an important but iterative and complex task.

We created a computational tool to automate the detection and correction of
many of these issues.
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Data Platform Data

curation
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Learn to deal with the heterogeneity of the 2% eurofins
human population BioPharma Services

cluster [@] 1 [&] 2 [m] 3 [F] 4 1- Transplant patient’s gene-expression profiles.
2- Phenotype: no-rejection & sub-clinical rejection.
T 3- No-rejection patients/samples are not healthy individuals.
10 ¥ x| 4- Observed 4 clusters, none were unique to a phenotype.
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-30 -20 -10 0 10 Figure 3: Panel (A)- PCA plot of the distribution of TX and subAR samples using all the features (16,600 genes); Panel (B)- PCA

PC1 (18_9%) plot of the distribution of TX and subAR samples using top 1% features (166 genes).



| must share an old (2017) story....

Metagenomic Images and Convolutional Neural Networks Establish the Association

Between Gastrointestinal Microbiomes in Beef Cattle and Pathogen Shedding

Rohita Sinha', Andy Benson'; Steve Kachman?; Etsuko Moriyama®; Jennifer Clarke'?; Jim Bono*; Jim Wells* Larry Kuehn*
1- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, 68588, USA; 2-Department of Statistics, University of Nebraska, Lincoln, NE, 68583, USA; 3-School of Biological Sciences,

INTRODUCTION

« Shiga toxin producing Escherichia coli (STEC) are responsible for significant liness'
and beef caltle are a major animal reservoir of these pathogens. Litte is known about
the refationship between the colonic microbiota and STEC shedding profiles’

Sholgun metagenomic data and STEC shedding profile data was generated from
>1,300 animals in five different cohorts. Each animals was sampled 7 times during
peak shedding seasons and metagenomic data was generated from a single
composite of all time points per animal while shedding was measured in each
individual time point

Although the data set was designed to be statistically-powered, the unique biological
and ecological features (sparse STEC shedding, unknown environmental atiributes,
macro-ecology of the MARC herd, and composited samples) led to a high signal fo
noise ratio, Consequently, we used a new approach discover associations between
colonic microbiome profiles and STEC shedding in beef cattle.

By converting microbial abundances from metagenome data to RGB images, we
successfully retrained a Convolutional Neural Network-based image classifier
(Inception V3) to classify Shedders and Non-shedders on the basis of the colonic
microbiota

Experimental Design & Metagenomic Data Processing

Fecal Sample Collection
Total 1328 samples from 5 different cohorts over a 5-year period

!

‘Seven samples from each animal during peak shedding period were
i i iple per animal for
sequencing: (HiSeq: 2 x 150 paired end reads)

Quality check

1-C
2 horter than 1006p
Microbial Profiing
Assembly free approach: Shot NGS reads
taxonomically annotated in the protein-space using KAWL (a
metagenome taxonomy annotation package).
‘Metagenomic Images
1- Phylum, Famity gl
Rearrange the

tadie:
Rows: total 26 fows based on the aiphabet A-Z
Each row had abundance of taxa starting with that alphabet

zero-value columas to have same size.

University of Nebraska, Lincoln, NE, 68588 4- US MARC

Retraining CNN (Inception V3) Classifer

S
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Training set: 40 metagenomic images of Non-shedders (CFU == 0) and 40 images
of Shedders (CFU > D)

Test set: 100 Non-shedder images and 100 Shedder images.

Figure3: Left image shows the progress in the test & vakdation accuracy with numbe of iterations
of minimzatin step. Right Wi fterations.

Minimal retraining was sufficient for classification

M: ic Images of Shedders (Sires

& Heifers) are Gender Dependent

H3680

SiresiD: S3007 $3003

Retraining CNN: Gender Based Classifiers

Validation accuracy: 92% validation and test accuracy was achieved on the training set

Test Accuracy: Classifier was further tested on additional Shedder (100) & Non-shedder
(100) images, and the corresponding success rates were 98% and 88% for Shedder and
[Non-shedders, respectively.

« We observed a significant effect of the year of sample-collection on the metagenomic,

profile and the corresponding images. Models trained on specific year's samples had!
shown belter success rates for samples from that year

Heifer Only sire Only

Training set 1: 40 metagenomic images of Non-shedders (CFU == 0) and

40 images of Shedders (CFU > 0, Heifer Only)

Training set 1: 40 metagenomic images of Non-shedders (CFU == 0) and

40 images of Shedders (CFU > 0, Sire Only)
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Test set:100 Non-shedder images and 63 Sire & 84 Hell
images

Shedder Prediction Accuracy: Sire Only: 62/63 and Hei
Low Cross Accuracy: Sire only classifier tested on Hedfe
Sire Only: 42/63 and Heifer Only: 8/84

1. Groups of colonic microbes, rather than individual
much more strongly associated with the STEC she:
Microbial abundances across multiple taxonom
Family and Genus) are informative and can
classifiable Metagenomic images

The CNN-based image processing has been ut
other complex systems®* and should have bro
MWAS with other complex features (e g. feed intak

»
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Let’s discuss one of the epigenetic omics data — to 200 eman
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nature \

Explore content v  About the journal v Publish with us v

DNA methylation creates a
nature > articles > article Ce”_speciﬁc epigenetic
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A DNA methylation atlas of normal human cell types
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Abstract

DNA methylation is a fundamental epigenetic mark that governs gene expression and

2,783,421 methylation blocks
processesl. Current datasets typically include only a fraction of methylation sites and are Of at |eaSt th ree CpGS W|th an

chromatin organization, thus providing a window into cellular identity and developmental

often based either on cell lines that underwent massive changes in culture or on tissues

average length of 544 bp

containing unspecified mixtures of cells®2%2. Here we describe a human methylome atlas,

based on deep whole-genome bisulfite lysis across

thousands of unique markers faf 39 cell types sorted from 205 healthy tissue samples.




Let’s talk about the cell-free nucleotide
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nature communications
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Tumor fractions deciphered from circulating cell-free
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Solving biological mixture models os, :
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Blood transcriptome is
a biological-mix

Blood cell-free DNA is Microbiome is
a biological-mix another biological-mix

We assume knowing all the components of these biological-mixtures.

It helps us using following constraints:

1- Sum of proportion of all known components would be 1.0 (or 100%).

2- We deal with non-negative numbers, since proportions are positive numbers.




Solving biological mixture models os. .
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We solve this equation: E=SxC

S (signature matrix) :
rows = component-id, columns = feature-ids
matrix-values = feature-frequency of a component

E (bulk matrix) :
rows = sample-id, columns = feature-ids
matrix-values = frequency of a feature for the given sample

C (proportion matrix) :
rows = sample-id, columns = component-id
matrix-values = proportion of a component in a sample

We eventually try to minimize the difference between the observed matrix (E )
and computed matrix (S x C) i.e., E— (S x C) = 0. Which yields optimal values for
N the matrix C (proportion of each component in a biological-mixture).

S—




Solving biological mixture models os. .
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We implemented Quadratic-programming to compute the fraction of multiple
tissues in the blood cell-free DNA, using cell-specific methylation patterns.




Human Methylome Atlas
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An algorithm of simulate biological-mixtures using
DNA Methylation patterns

In order to test our method, we create a bulk data which shows the percentage of methylation in
each position in a specific sample.

<% eurofins

Step 1 : Simulate mixtures: define the proportions of each cell types in the mix (i.e., cl:c2:c3 =
10:20:70)
Step 2 :For each position in the Methylome table:
* Let’s say we have (N) methylation records (based on the NGS data): let's
make N = 10
* Let’s say the methylation-probabilities for each cell types are: ¢c1 = 70%, c2
= 30%, c3 = 80%
* Run a uniform random-number generator N times
* based on the simulated mix, the methylation records (MR) would ideally
have following distribution: c1 =1 MR, c2 =2 MR, ¢c3 = 7MR
* Run a uniform random-number generator 10 times-- by looking at the
original number which shows the probability of the methylation in that
specific position, if the random number is greater than the original
methylation probabilities, convert the number to 0( unmethylated),
otherwise convert the number to 1 ( methylated)
Step 3: Finally, sum all the 1s and divide by N (10), which is the observed frequency of
methylation on a position.



Now the fun begins... let’s run a few simulations <& eurofins
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Simulation mix:

3 cell types
cell proportions: 2, 8,20 MRs (2/30 = 0.06; 8/30 = 0.26; 20/30 = 0.66)

Console  Terminal Background Jobs
R R423
11 00011 000=F

0.05623246
0. 25107591
0. 69269163

the proportion of each cell type to make sure the summation is 1




Now the fun begins... let’s run a few simulations <& eurofins
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Simulation mix:
3 cell types

cell proportions: 1, 19,80 MRs (1/100 = 0.01; 19/100 = 0.19; 80/100 = 0.80)

=L

v] 5.386350e-19

P,] 1.857603e-01

summation is 1




Now the fun begins... let’s run a few simulations <& eurofins
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Simulation mix:
5 cell types

cell proportions: 5, 10,15, 170, 800 MRs (5/1000 = 0.005; 10/1000 = 0.01;
15/1000 = 0.015, 170/1000 = 0.17, 800/1000 = 0.80)

Console  Terminal Background Jobs -]

-9.605638e-19

[ 9.360147e-03
[1. 1.558646e-02
[4 1.66659%6e-01
[5 B.083938e-01

pp”the proportion of each cell type to make sure the summation is 1

i 1




NOW LET’'S TRY IT ON THE REAL DATA <= eurofins
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Viracor AboutUs ~  OurTesting ~  Tools for Providers ~

We extracted cell-free DNA from multiple Viracor TRAC® Kidney dd-cfONA  ruccuie o
Kidney-transplant patients ‘

Transplant Rejection Allograft Check (TRAC®), donor-derived cell-free DNA (dd-cfDNA) ‘ u L 4 .
WATCH VIDEO: https://vimeo.com/429688506 S 0‘
1 = I = | = | = 1 Q. e
| Kidneyl Kidney3 Kidney9 Kidney6 Ayﬁ ; “‘
Sample 1 1.6 2.3 : 1.95 “
] [ ]
Generated cell-free DNA methylation data |Sample 2 3.6 5.7 -r 4.65 '-_
|Sample 3 5.' 5 :
Sample 4 : 0 -
J 5 | |
r\ |Sample 5 2.2 1 2.2 .
Sample 6 1 2.2 . 0.61 .
] " .
Processed cf-DNA methylation data using our |Sample 7 2.1 1 21 .
Sample 8 1 . 1 .'
protocol | . .
Sample 9 1 0.44 5 0.72 .
] L
Sample 10 4.9 5 49 =
1 |
|Sample 11 1.7 * 1.7 :'
[Sample 12 2.2 " 2.2‘0
S o .. a ”
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Summary:
We discussed:

 How a centralized Bioinfo & Al unit helps our plans.
Why the current A.l/M.L are more data hungry.
What skill sets we may need for the optimal utilization of the big-data.
Usage of the public-data and associated challenges.
Strategies to account for the heterogeneity of the biological data.
Epigenetic data and solving mixture-models.
Our pursuit to use the Methylation-data to better understand the

allograft injuries.

CONFIDENTIAL and PROPRIETARY — Eurofins BioPharma Services




Thanks for
joining us &
listening!
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