Explore the World of End-to-End Integrated Laboratory Services

Clinical Testing Locations

🛟 eurofins

Eurofins Scientific

🛟 eurofins

BioPharma Services

FOOD

BIOPHARMACEUTICAL

ENVIRONMENTAL

- FOUNDED IN 1987 WITH 4 EMPLOYEES
- 61,000 STAFF IN 940 LABORATORIES ACROSS 59 COUNTRIES
- EURO 6.7 BILLION IN ANNUAL REVENUE IN 2021
- OVER 200,000 VALIDATED ANALYTICAL METHODS
- 450,000,000 ASSAYS PERFORMED ANNUALLY
- OVER 40 MILLION COVID-19 PCR TESTS CARRIED OUT SINCE START OF THE PANDEMIC

🔅 eurofins

BioPharma Services

End-to-End Testing Solution

	File	ND File NDA,	BLA, MAA Launch	Product
DISCOVERY	PRECLINICAL / EARLY DEVELOPMENT	CLINICAL RESEARCH & DEVELOPMENT	APPROVAL	COMMERCIAL
Lead Qualification Synthesize NME or New Biologic	Assess Safety and Biological Activity Pharmacology, Toxicity & DMPK	Assess Safety, Dosage & Efficacy in Humans Phase I, II and III Studies	Verify Safety, Effectiveness & Controls to Agency	Assess Long-Term Effectiveness (Phase IV Studies) Surveilance/Quality Control
DISCOVERY: Small Molecule and Biologic Screening and Characterization, Integrated Drug Discovery, Chemistry, in vitro Safety Pharmacology, Phenotypic Analysis, ADME-Tox, in vivo Models, Custom Assays and Product				
	PRECLINICAL / EARLY DEVELOPMENT: Toxicology, Safety Pharmacology, Analytical S	ervices		
	CDMO: Drug Substance/API & Drug Product Develo	pment & Manufacturing for Biologics and Small Molecules	5	
PRODU	BIOPHARMA PRODUCT PSS: Hiring, training and managing insourced s	CLINICAL TRIALS SUPPLY: Primary & Secondary Packs TESTING: GLP, GMP, Stability, Quality Control, Mic scientists and related support staff at Client facilities.	aging and Distribution	cess Development
Genomics: Next Generation Sequencing, Genotyping, Micro Arrays, Pharmacogenomics				
CLINICAL CLINICAL	BIOANALYTICAL / REGULATED: PK/TK, PD ECL	, Immunogenicity, ADA, NAb, Biomarkers CENTRAL LABORATORY: Safety testing, Biomarke therapeutic areas BIOMARKERS: Customized Assay Development an immune response, oncology PATHOLOGY: [Molecular] Pathology, Histology, Cy	ers and global PBMC Netv and Advanced Validations f tology, FISH	vork, in support of all

Eurofins Scientific

🛟 eurofins

Bioinformatics/AI to mine the public-data & boost

the Lab of the Future

Rohita Sinha, PhD Director, CoE for BI & AI, Eurofins, US Data, more & more data points !!

🛟 eurofins

Why do we need so many data points?

🛟 eurofins

Public databases are a great source of data?

🛟 eurofins

BioPharma Services

We (healthcare industry) need to either generate or collaborate with hospitals/othercenters to get enough data to validate our products.

For model-development: we can certainly source the data from the public-databases

Public databases offered by NIH (NCBI, GEO, PDB, TCGA, PubChem) and other groups such as GISAID (a global repository of Covid-2 genome sequences)

						size	e in TB
CNTL	1						1
DLBC			-	ͳϹʹϚΔ			
UCS					1		
CHOL							2
KICH							
UVM							4 1
MESO							4
ACC							
THYM							3
TGCT							
READ							
PCPG							
ESCA							
PAAD							8
SARC							10
LAML							6
KIRP							60
CESC			I				
LIHC							68
BLCA							
GBM							80
SKCM							46
COAD							75
STAD							90
LGG							
THCA							62
PRAD							6
LUSC							7
KIRC							73
HNSC							62
UCEC							40
OV							120
LUAD							68
BRCA							- 0
			1	1	1		
	0	400	800	1200	1600	2000	2400
			number o	f unique pat	ient ids		

Keyword or GEO Accession Search

Browse Conter	t	
Repository Browser		
DataSets:	4348	
Series: <u></u>	203545	
Platforms:	25153	
Samples:	6476128	

2 G	TEX	(Po	rtal
V8 Release	#	#	#
	Tissues	Donors	Samples

Total	54	948	17382
With Genotype	54	838	15253
Has eQTL Analysis*	49	838	15201

* Number of samples with genotype >= 70

Challenges with the public data

🛟 eurofins

BioPharma Services

It's an important but iterative and complex task.

We created a computational tool to automate the detection and correction of many of these issues.

Challenges with the public data **eurofins** Platform Data Data Batch effect effect Annotation curation Heatmap - before Heatmap - before 8 Pheno Pheno A B Batch ABCC13 ABRACL ACTB ADM ADRB2.FAM AKAP12 VSAP12 6 4 Batch 2 0 -2

Learn to deal with the heterogeneity of the human population

eurofins

plot of the distribution of TX and subAR samples using top 1% features (166 genes).

I must share an old (2017) story...

🛟 eurofins

BioPharma Services

Metagenomic Images and Convolutional Neural Networks Establish the Association Between Gastrointestinal Microbiomes in Beef Cattle and Pathogen Shedding

Rohita Sinha¹, Andy Benson¹; Steve Kachman²; Etsuko Moriyama³; Jennifer Clarke^{1,2}; Jim Bono⁴; Jim Wells⁴; Larry Kuehn⁴ 1- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, 68588, USA; 2-Department of Statistics, University of Nebraska, Lincoln, NE, 68583, USA; 3-School of Biological Sciences, University of Nebraska, Lincoln, NE, 68583, USA; 3-School of Biological Sciences,

> Final Layer

ed boxes) are (N. M. D

Retraining CNN (Inception V3) Classifer

INTRODUCTION

- Shiga toxin producing Escherichia coli (STEC) are responsible for significant illness¹ and beef cattle are a major animal reservoir of these pathogens. Little is known about the relationship between the colonic microbiota and STEC shedding profiles³.
- Shotgun metagenomic data and STEC shedding profile data was generated from >1,300 animals in five different cohorts. Each animals was sampled 7 times during peak shedding seasons and metagenomic data was generated from a single composite of all time points per animal while shedding was measured in each
- composite or all time points per animal write sheeping was measured in each individual time point. Although the data set was designed to be statistically-powered, the unique biological and ecological features (sparse STEC shedding, unknown environmental attributes, macro-ecology of the MARC herd, and composited samples) led to a high signal to
- matoresoluy or use netco result, we used a new approach discover associations between colonic microbiome profiles and STEC shedding in beef cattle.
 By converting microbial abundances from metagenome data to RGB images, we successfully retrained a Convolutional Neural Network-based image classifier
- (Inception V3) to classify Shedders and Non-shedders on the basis of the colonic microbiota.

Sincen samples from each armind alcring peak shedding period ve composited into a single sample per animal for shotgan Mesageno sequencing (HSeq. 2 x 150 pared end reads) Quality check 1- Cutadapt removes terminal low Phred-score bases 2- Trimmed reads shorter than 100bp were discarded Microbial Profiling
composited into a single sample per animal for shotgan Metageno sequence; (Hilse; 2 x 10 pared end reads) Quality check 1 - Cutadapt removes terminal low Phred-score bases 2 - Trimmed reads shorter than 100bp were discarded Microbial Profiling
Quality check 1- Cutadapt removes terminal low Phred-score bases 2- Trimmed reads shorter than 100bp were discarded Microbial Profiling
1- Cutadapt: removes terminal low Phred-score bases 2- Trimmed reads shorter than 100bp were discarded Microbial Profiling
Microbial Profiling
•
Assembly free approach: Short NGS reads were taxonomically annotated in the protein-space using KAIJU (a metagenome taxonomy annotation package).
Metagenomic Images

Test Accuracy: Classifier was further tested on additional Shedder (100) & Non-shedder (100) images, and the corresponding success rates were 98% and 88% for Shedder and Non-shedders, respectively.

We observed a significant effect of the year of sample-collection on the metagenomic profile and the corresponding images. Models trained on specific year's samples had shown better success rates for samples from that year.

Conclusions 1. Groups of colone microbes, rather than Individual much more strongly associated with the STEC the 2. Microbial abundances across multiple taxonom Family and Genus) are informative and can classifiable Metagenomic images. 3. The CNN-based image processing has been u other complex systems³⁴ and should have bro MWAS with other complex features (e.g. feed intak REFERENCES

clinization of Beef Cattle by Shiga Toxin-Producing Exchencible coll durin ("PLG SOFET12014016151, Re-b 2016. ethniking the Inception Architecture for Computer Vision," Computer Vision manufolgible-ethnic clinication and the Inception Computer Vision manufolgible-ethnic clinication and the Inception Vision, Computer Vision, Then Nethrology meets technology, 'Retrained 'Inception Vis' classifier for 8 BMM 2017

When technology meets technology: Retrained 'Inception V3' classifier for NGS based pathogen detection

Publisher: IEEE

🛃 PDF

Rohita Sinha; Jennifer Clarke All Authors

Cite This

Let's discuss one of the epigenetic omics data – DNA Methylation

nature

Explore content 🗸 About the journal 🖌 Publish with us 🗸

nature > articles > article

Article Open Access Published: 04 January 2023

A DNA methylation atlas of normal human cell types

Netanel Loyfer, Judith Magenheim, Ayelet Peretz, Gordon Cann, Joerg Bredno, Agnes Klochendler, Ilana Fox-Fisher, Sapir Shabi-Porat, Merav Hecht, Tsuria Pelet, Joshua Moss, Zeina Drawshy, Hamed Amini, Patriss Moradi, Sudharani Nagaraju, Dvora Bauman, David Shveiky, Shay Porat, Uri Dior, Gurion Rivkin, Omer Or, Nir Hirshoren, Einat Carmon, Alon Pikarsky, ... Tommy Kaplan 🖂 + Show authors

Nature 613, 355–364 (2023) Cite this article

49k Accesses | 12 Citations | 208 Altmetric | Metrics

Abstract

DNA methylation is a fundamental epigenetic mark that governs gene expression and chromatin organization, thus providing a window into cellular identity and developmental processes¹. Current datasets typically include only a fraction of methylation sites and are often based either on cell lines that underwent massive changes in culture or on tissues containing unspecified mixtures of cells^{2,3,4,5}. Here we describe a human methylome atlas, based on deep whole-genome bisulfite sequencing, allowing fragment-level analysis across thousands of unique markers for 39 cell types sorted from 205 healthy tissue samples.

DNA methylation creates a cell-specific epigenetic signature

eurofins

Found blocks of homogeneously methylated CpG sites

2,783,421 methylation blocks of at least three CpGs with an average length of 544 bp

Let's talk about the cell-free nucleotide methylation data

🛟 eurofins

Solving biological mixture models

🛟 eurofins

BioPharma Services

Blood cell-free DNA is a biological-mix Microbiome is another biological-mix Blood transcriptome is a biological-mix

We assume knowing all the components of these biological-mixtures.

It helps us using following constraints:

1- Sum of proportion of all known components would be 1.0 (or 100%).

2- We deal with non-negative numbers, since proportions are positive numbers.

Solving biological mixture models (Quadratic Programming)

😫 eurofins

BioPharma Services

We solve this equation: $E = S \times C$

S (signature matrix) :

rows = component-id, columns = feature-ids matrix-values = feature-frequency of a component

E (bulk matrix) :

rows = sample-id, columns = feature-ids matrix-values = frequency of a feature for the given sample

C (proportion matrix) :

rows = sample-id, columns = component-id matrix-values = proportion of a component in a sample

We eventually try to minimize the difference between the observed matrix (E) and computed matrix ($S \times C$) *i.e.*, $E - (S \times C) = 0$. Which yields optimal values for the matrix C (proportion of each component in a biological-mixture).

Solving biological mixture models (Quadratic Programming)

🛟 eurofins

BioPharma Services

We implemented Quadratic-programming to compute the fraction of multiple tissues in the blood cell-free DNA, using cell-specific methylation patterns.

HOW TO VALIDATE OUR PROTOCOL

Human Methylome Atlas

🔅 eurofins

				Chr I	omo ocat	osom ion	al						Cell	Тур	es						Pro me	babi ethyl	lity atio	of n				
																		н н н		/								
1	start	5110	bcell_1	bcell_2	bcell_3	bcell_4	bcell_5	bcell_6	bcell_7	bcell_8	bcell_9	colon_1	colon_2	colon_3	colon_4	colon_5	colon_6	colon_7	colon_8	colon_9	colon_10	colon_11	colon_12	colon_13	colon_14	colon_15	colon_16	colon_17
2 chr1 4	836950	837233	0.842222	0.857222	0.942	0.7975	0.832778	0.731111	0.875	0.764333	0.768667	0.419039	0.255106	0.477394	0.4713	0.588611	0.359039	0.505167	0.307333	0.363502	0.555335	0.397236	0.261111	0.328889	0.303333	0.361111	0.430372	0.342222
3 chr1	850702	851077	0.639444	0.664167	0.824286	0.447917	0.523333	0.5025	0.77625	0.601706	0.632647	0.315106	0.367725	0.111319	0.440853	0.351097	0.183447	0.439769	0.380978	0.203888	0.455693	0.397159	0.155	0.351111	0.352778	0.437222	0.447467	0.463333
4 chr1	864780	865152	0.808571	0.899688	0.878529	0.863636	0.805909	0.816944	0.932941	0.845235	0.855294	0.1545	0.372608	0.339042	0.573236	0.536642	0.528861	0.392539	0.467261	0.561499	0.600314	0.45218	0.200556	0.413333	0.375	0.457222	0.5465	0.493333
5 chr1	868110	868741	0.939688	0.874118	0.892647	0.767857	0.752778	0.876087	0.970789	0.832261	0.848348	0.238196	0.119233	0.243783	0.402622	0.444587	0.193602	0.356065	0.307896	0.430329	0.480779	0.294862	0.158696	0.133913	0.08913	0.132609	0.253622	0.137826
6 chr1	920168	920354	0.69125	0.835	0.786875	0.84	0.89125	0.820625	0.826875	0.767875	0.715625	0.185613	0.119213	0.171169	0.277556	0.475231	0.181294	0.311706	0.207519	0.164282	0.327283	0.173214	0.097143	0.142857	0.087143	0.092857	0.145088	0.108571
7 chr1	986214	986847	0.9666	0.662656	0.928226	0.680556	0.805682	0.926711	0.931351	0.663561	0.674881	0.408202	0.713205	0.429708	0.685894	0.755956	0.274271	0.737506	0.396559	0.499692	0.673115	0.513039	0.157558	0.599535	0.749186	0.762093	0.856528	0.75686
8 chr1	995950	996317	0.622609	0.692895	0.613864	0.828125	0.67675	0.790652	0.85175	0.640652	0.627478	0.230417	0.245543	0.132789	0.515107	0.555326	0.181913	0.353346	0.29428	0.428922	0.462753	0.280737	0.131087	0.230652	0.226087	0.240652	0.380276	0.256957
9 chr1	1045135	1045787	0.928158	0.938421	0.967105	0.974375	0.895	0.912778	0.959444	0.955105	0.952526	0.168897	0.064382	0.063671	0.501521	0.779697	0.1798	0.248705	0.227584	0.772482	0.835483	0.207016	0.036316	0.061316	0.025263	0.042632	0.154866	0.019412
10 chr1	1058075	1058994	0.758378	0.760781	0.5816	0.70625	0.6785	0.709865	0.850735	0.771647	0.711351	0.238964	0.067834	0.113764	0.448839	0.654955	0.190281	0.24372	0.221988	0.639448	0.642565	0.171531	0.091111	0.076081	0.056528	0.055143	0.128334	0.047361
11 chr1	1061092	1061660	0.98375	0.86125	0.922778	0.9835	0.8925	0.7742	0.9398	0.936231	0.9375	0.159631	0.170269	0.279185	0.758629	0.868752	0.30415	0.352404	0.239475	0.721272	0.747068	0.212132	0.196923	0.136538	0.262692	0.081923	0.437217	0.100192
12 chr1	1062143	1062366	0.935455	0.644167	0.926923	0.923214	0.604167	0.771	0.888	0.724636	0.7424	0.453903	0.225547	0.084593	0.748627	0.752907	0.15962	0.303133	0.1394	0.688944	0.643062	0.240998	0.253	0.47	0.618667	0.462	0.679933	0.524333
13 chr1	1062973	1063885	0.925	0.888068	0.873214	0.905789	0.891585	0.904271	0.907653	0.91134	0.933653	0.291846	0.067002	0.026553	0.790367	0.497405	0.27113	0.282361	0.179864	0.234542	0.450056	0.175376	0.023571	0.037872	0.009149	0.035444	0.127936	0.022245
14 chr1	1064792	1065434	0.947308	0.9415	0.825714	0.9112	0.813704	0.933846	0.971346	0.908444	0.908741	0.186611	0.051396	0.077141	0.874224	0.814713	0.249843	0.2619	0.227487	0.230876	0.492252	0.159698	0.043519	0.036667	0.021111	0.033148	0.168522	0.036667
15 chr1	1065665	1066181	0.870833	0.779348	0.771333	0.818148	0.806053	0.826552	0.926207	0.82975	0.87663	0.283105	0.082502	0.074078	0.763357	0.628884	0.137238	0.259174	0.219745	0.207932	0.361339	0.193325	0.01431	0.024138	0.031379	0.014655	0.395093	0.01
16 chr1	1066236	1066586	0.905667	0.87	0.981667	0.797	0.952857	0.818333	0.883667	0.816867	0.860333	0.28044	0.038607	0.1462	0.78972	0.637787	0.094213	0.338107	0.227747	0.269934	0.541576	0.147665	0.062	0.004	0.021333	0.029333	0.353023	0.059333
17 chr1	1067378	1067547	0.9495	0.928333	0.9375	0.916667	0.935909	0.815909	0.967	0.90075	0.904167	0.255188	0.505208	0.357738	0.951983	0.9625	0.397721	0.203758	0.352413	0.372809	0.582676	0.190778	0.1025	0.089167	0.080833	0.0625	0.082508	0.100833
18 chr1	1090810	1091043	0.961667	0.956111	0.9375	0.961111	0.937778	0.933889	0.892222	0.907	0.932	0.940094	0.97985	0.955583	0.921822	0.92065	0.934694	0.917983	0.936511	0.947112	0.950938	0.956895	0.937778	0.94	0.946667	0.933333	0.8913	0.955556
19 chr1	1098515	1099650	0.841455	0.848462	0.833507	0.810392	0.867424	0.90223	0.937324	0.90947	0.822122	0.204607	0.167783	0.089262	0.117331	0.253946	0.169263	0.268848	0.369507	0.249086	0.319376	0.166676	0.036849	0.044795	0.0525	0.017933	0.218236	0.028767
20 chr1	1108460	1108723	0.8675	0.77	0.9	0.955385	0.753214	0.768571	0.739643	0.779615	0.756286	0.6818	0.696514	0.786864	0.638886	0.691943	0.824479	0.7466	0.752618	0.838209	0.776602	0.71934	0.757143	0.807143	0.835714	0.862143	0.813018	0.828571
21 chr1	1161352	1161624	0.979375	0.961364	0.95	0.924545	0.9465	0.91	0.931818	0.967273	0.970273	0.918014	0.952341	0.894486	0.837432	0.909091	0.880559	0.907532	0.906014	0.888918	0.897149	0.921996	0.879091	0.932727	0.911818	0.937273	0.937441	0.910909
22 chr1	1164456	1164780	0.895	0.919545	0.872308	0.959	0.865	0.924667	0.941	0.8726	0.921667	0.92921	0.697803	0.899787	0.92095	0.81679	0.93916	0.89509	0.880863	0.912776	0.897925	0.915613	0.857333	0.862667	0.860667	0.863333	0.889657	0.830667
an shut	1000010	4000407	0.070000	0.00	0.000000	0.0475	0 705	0.040000	0 007770	0.004000	0 20200	0 7000	0.000044	0.000547	0.000000	0.000044	0.070707	0.004057	0.045047	0.000400	0.001014	0.000040	0.000000	0.074444	0.007770	0.070007	10000	0.045556

An algorithm of simulate biological-mixtures using DNA Methylation patterns

🛟 eurofins

BioPharma Services

In order to test our method, we create a bulk data which shows the percentage of methylation in each position in a specific sample.

Step 1 : Simulate mixtures: define the proportions of each cell types in the mix (*i.e.*, c1:c2:c3 = 10:20:70)

- **Step 2** :For each position in the Methylome table:
 - * Let's say we have (**N**) methylation records (based on the NGS data): let's make N = 10
 - * Let's say the methylation-probabilities for each cell types are: c1 = 70%, c2 = 30%, c3 = 80%
 - * Run a uniform random-number generator ${\bf N}$ times
 - * based on the simulated mix, the methylation records (MR) would ideally have following distribution: c1 = 1 MR, c2 = 2 MR, c3 = 7MR
 - * Run a uniform random-number generator 10 times-- by looking at the original number which shows the probability of the methylation in that specific position, if the random number is greater than the original methylation probabilities, convert the number to 0(unmethylated), otherwise convert the number to 1 (methylated)

Step 3: Finally, sum all the 1s and divide by **N** (10), which is the observed frequency of methylation on a position.

Now the fun begins... let's run a few simulations

🛟 eurofins

BioPharma Services

Simulation mix: 5 cell types cell proportions: 5, 10 ,15, 170, 800 MRs (5/1000 = 0.005; 10/1000 = 0.01; 15/1000 = 0.015, 170/1000 = 0.17, 800/1000 = 0.80)

NOW LET'S TRY IT ON THE REAL DATA

🔅 eurofins

🛟 eurofins

BioPharma Services

Summary:

We discussed:

- How a centralized Bioinfo & AI unit helps our plans.
- Why the current A.I/M.L are more data hungry.
- What skill sets we may need for the optimal utilization of the big-data.
- Usage of the public-data and associated challenges.
- Strategies to account for the heterogeneity of the biological data.
- Epigenetic data and solving mixture-models.
- Our pursuit to use the Methylation-data to better understand the allograft injuries.

Thanks for joining us & listening!

